Preparation of Single Crystals of a New Compound, Ta₅B₆ by the Aluminium-Flux Method

Shigeru Okada,* Kenya Hamano, Iwami Higashi,† Torsten Lundström,†† and Lars-Erik Tergenius††
Department of Applied Chemistry, Faculty of Engineering, Kanagawa University, Kanagawa-ku, Yokohama 221

†The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01

††Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

(Received October 2, 1989)

Single crystals of a new compound Ta_5B_6 was prepared by the high temperature aluminium solution method using tantalum and boron powder as starting materials in an argon atmosphere. The experimental conditions for obtained single crystals of relatively large size were established. The optimum conditions for growing Ta_5B_6 single crystals were found to include atomic ratios of starting materials B/Ta=1.2 and Al/Ta=8.38, soaking temperature $1650\,^{\circ}$ C, soaking time 5 h and a cooling rate of $25\,^{\circ}$ C h⁻¹. Single crystals of Ta_5B_6 , having a grey color and metallic luster, were generally obtained in the form of an irregular or trapezoidal shape: the latter crystals were enclosed by two large $\{010\}$ planes. The largest crystals prepared have maximum dimensions of about $0.12 \, \text{mm} \times 0.13 \, \text{mm} \times 0.23 \, \text{mm}$. The crystals are orthorhombic with a space group of either Cmm2, Cm2m, C222, or Cmmm and the unit cell dimensions $a=3.1385(10)\,\text{Å}$, $b=22.609(7)\,\text{Å}$, $c=3.2865(8)\,\text{Å}$, and $V=233.20(12)\,\text{Å}^3$. The X-ray density is $13.808(2)\,\text{g cm}^{-3}$. The present study of growing Ta_5B_6 crystals is the first single crystal growth study of a V_5B_6 type crystal.

The transition metal binary borides have several unique chemical and physical properties, which are of great importance in many cases from technological applications. Among their attractive properties are high melting points, chemical stability, high electrical and thermal conductivity, high hardness and high mechanical toughness.¹⁾

Previously, the properties of most borides have been studied on polycrystalline specimens. The need for precise data have led to an increased interest in the preparation of single crystals of these materials. Preparation of single crystals of the binary borides is fairly difficult because of their melting points and chemical stability. The simplest method of preparing single crystals of borides, in terms of growth technology at lower temperatures, is provided by the crystal growth from solution in metallic melts.²⁾ Several reports have been published in recent years on the growth of single crystals of binary borides from metallic solutions. For example, the preparation of pure zirconium and hafnium diborides from copper, tin and lead melts has been studied.3) Single crystals of the incongruently melting borides Mo₂B₅ and W₂B₅ have been prepared from an aluminium solution. 4) We reported earlier the growth of single crystals of TiB₂, ZrB₂, HfB₂, VB, V₃B₄, VB₂, NbB₂, TaB, TaB₂, CrB, Cr_3B_4 , Cr_2B_3 , CrB_2 , $W_2B_{5-x}(WB_2)$, and $Mo_2B_{5-x}(MoB_2)$ from an aluminium-flux soaked at 1300-1550 °C for 1-10 h.5-7) From the experimental results of these reports it is apparent that a great number of transition metals react with boron in metallic melts to form borides.

In the tantalum-boron system the intermediate phases Ta₂B, Ta₃B₂, TaB, Ta₃B₄, and TaB₂ have been reported.^{8,9)} Recently we have prepared small crystals of TaB and TaB₂ from tantalum and boron powder as starting materials using an aluminium-flux technique.¹⁰⁾ Further detailed experiments on the Ta-B

system have led us to obtain a new binary metal boride, Ta_5B_6 in single crystalline form. In the present paper, we report the experimental conditions for growing the new boride as well as its crystallographic data.

Experimental

The synthesis of crystals was carried out in a resistance furnace equipped with a tantalum heating element. The starting materials were tantalum metal powder (particle size, -325 mesh: purity, 99.9%), crystalline boron (particle size, -115 mesh: purity, 99.5%) and aluminium metal chips (purity, 99.995%). The starting materials were placed in an alumina crucible (purity, 99.8%) and heated at a rate of 300 °C h⁻¹ up to a temperature of 1650 °C in an argon atmosphere. After the specimen was kept at this temperature for 5 h and cooled to 1000 °C at a rate of 25 °C h⁻¹, it was cooled to room temperature by switching off the electric power of the furnace. After cooling, the as-grown crystals in the reaction mixtures were separated from the solidified matrix by dissolving the excess metal in 6 mol dm⁻³ hydrochloric acid for about 5 days. The experimental conditions for each run as well as the crystalline phases obtained are shown in Table 1. The crystalline phases and the unit cell dimensions were examined using a powder Xray diffractometer (Rigaku Denki Co., Ltd., RU-200) with monochromatic Cu $K\alpha$ radiation (wavelength $\lambda=1.541743$ Å) or an XDC 1000 Guinier-Hägg foucusing X-ray powder diffraction camera with strictly monochromatic Cu Kα1 radiation (wavelength $\lambda=1.5405981 \text{ Å}$) and semiconductor grade silicon (purity, 99.9999%, a=5.431065Å) as internal calibration standard.¹¹⁾ The Guinier-Hägg film was used for measuring X-ray diffraction intensities, which was performed with a Line Scanner (Model LS-18).12) relative amounts of the product phases can be assumed to be proportional to the relative intensities of the phases disregarding absorption and possibly preferred orientation effects.¹³⁾ The non-overlapping diffraction lines I₂₂₁ (TaB), I_{150} (Ta₅B₆), I_{121} (Ta₃B₄), and I_{101} (TaB₂) were selected for calculation of the relative intensities. The relative intensity of a phase is defined as

Table 1. Preparation Conditions of Ta₅B₆ Crystals from Molten Aluminium Solution, Soaked at 1650°C for 5 h

Run. No.		tion of starting (atomic ratio)	g material	Phases identified			
	Та	B Al					
1	1	1.10	100.60	ТаВ,	Ta ₃ B ₄ ,	Ta_5B_6	
2	1	1.15	100.60	TaB,	Ta_3B_4 ,	Ta_5B_6	
3	1	1.20	100.60	Ta_3B_4	Ta_5B_6 ,	ТаВ	
4	1	1.25	100.60	Ta_3B_4	Ta_5B_6 ,	TaB	
5	1	1.30	100.60	Ta_3B_4	Ta_5B_6 ,	TaB, TaB ₂	
6	1	1.35	100.60	Ta_3B_4 ,	TaB_2 ,	Ta_5B_6	
7	1	1.40	100.60	Ta_3B_4	TaB_2 ,	Ta_5B_6	
8	1	1.20	3.35	ТаВ,	Ta_5B_6 ,	Ta_3B_4	
9	1	1.20	8.38	Ta_5B_6	ТаВ,	Ta_3B_4	
10	1	1.20	16.77	Ta_5B_6	Ta_3B_4 ,	TaB	
11	1	1.20	50.30	Ta_3B_4	Ta_5B_6 ,	TaB	
12	1	1.20	100.60	Ta_3B_4	Ta_5B_6 ,	TaB	
13	1	1.20	217.96	Ta_3B_4 ,	TaB,	TaB ₂ , Ta ₅ B ₆	

The starting materials for Run Nos. 1 to 7 consist of 2.00 g Ta, 0.13 to 0.17 g Boron and 30.0 g Al, the starting materials for Run Nos. 8 to 13 consist of 2.00 g Ta, 0.14 g Boron and 1.0 to 65.0 g Al.

$$I_{\rm i}({
m rel.}) = I_{\rm i}/\sum\limits_{
m j=1}^n I_{
m j}$$

where i, j=TaB, Ta₅B₆, Ta₃B₄, and TaB₂.

Some crystals were examined to collect data on crystal plane orientations or other crystal data using Weissenberg, oscillation and precession cameras, and a four-circle type automatic diffractometer (Rigaku Denki Co., Ltd., AFC-6), equipped with a graphite monochrometer using Mo $K\alpha$ radiation (wavelength λ =0.710678 Å). Binocular microscope and scanning electron microscope (SEM)(JEOL, JSM-840) were used for morphological investigations. The aluminum content of the crystals was analyzed using an electron probe microanalyzer (EPMA)(JEOL, JSM-35C). The X-ray density was determined using the results of the unit cell dimension measurements and the assumption that Ta_5B_6 is iso-structural with V_5B_6 .

Results and Discussion

Conditions of Synthesis for Ta₅B₆ Crystals. The synthesis was performed under constant conditions of heating rate 300 °C h⁻¹, soaking temperature 1650 °C, soaking time 5 h, cooling rate 25 °C h⁻¹ and an atomic ratio Al/Ta = 100.60. The atomic ratio B/Ta in the starting material was varied from 1.10 to 1.40 (Run No. 1 to 7). The amount of tantalum in the starting material was fixed at 2g throughout all the experiments. The crystalline phases obtained were identified by X-ray powder diffraction. The results are listed in Table 1, and typical X-ray diffraction patterns are shown in Fig. 1. As seen from Table 1 and Fig. 1, four kinds of tantalum borides, i.e., TaB, the new phase Ta₅B₆, Ta₃B₄, and TaB₂ were formed, while crystals of Ta_2B , Ta_3B_2 , AlB_2 , $^{14)}$ α - AlB_{12} , 15 , $^{16)}$ β - AlB_{12} , $^{14)}$ γ - AlB_{12} , $^{17)}$ and Ta₅Al₃B_x¹⁸⁾ were not detected by powder X-ray diffraction. The variation of the atomic ratio of the starting materials gave different product phases. With increased boron concentration, more boron-rich phases are formed. The desired Ta_5B_6 crystals were invariably obtained as a phase mixture for all atomic ratios B/Ta in the starting material (Run No. 1 to 7). However, the relative X-ray intensity of formed Ta_5B_6 became remarkably large for B/Ta=1.20 to B/Ta=1.30. From Table 1 (Run No. 1 to 7), it is evident that the most favorable atomic ratio B/Ta for obtaining Ta_5B_6 crystals is 1.20.

The influence of the amount of molten aluminium used in the crystal growth of Ta₅B₆ was studied under constant conditions of soaking temperature 1650 °C, soaking time 5 h and already established atomic ratio of the starting materials B/Ta=1.20. The results of the powder X-ray analysis of the product specimens are presented in Table 1 (Run No. 8 to 13) and Fig. 2. In all experiments on influence of the amount of aluminium solution, Ta₅B₆ crystals were obtained as a phase mixture together with crystals of TaB and Ta₃B₄ or TaB₂ for Al/Ta=3.35 to 217.96. When starting materials with the atomic ratio of Al/Ta=8.38 were used, the Ta₅B₆ phase shows the strongest relative Xray intensity. However, from starting materials containing a very small amount of aluminium (Al/Ta=3.35)(Run No. 8) and from those containing larger amount of aluminium (Al/Ta>16.77) (Run No. 10 to 13), only small amounts of Ta₅B₆ crystals were obtained.

It is clear from the above results that for all B/Ta and Al/Ta atomic ratios of the starting materials, Ta₅B₆ crystals were obtained as a phase mixture together with crystals of TaB and Ta₃B₄ or TaB₂. The relative X-ray intensity of formed Ta₅B₆ became remarkably large for soaking temperature 1650 °C, soaking time 5 h, and the atomic ratios of the starting materials: B/Ta=1.2 and Al/Ta=8.38.

Ta₅B₆ crystals were deposited in substantial quantities on the wall and bottom of the alumina crucible.

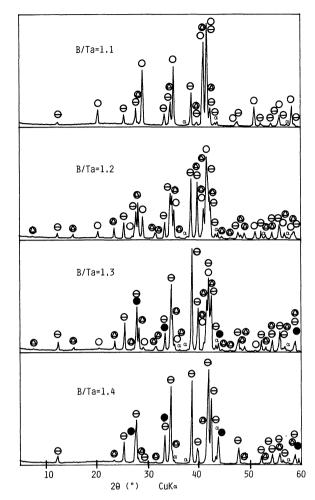


Fig. 1. Powder X-ray patterns (diffractometer data, Cu Kα radiation) of the products obtained from several starting materials with various compositions. The atomic ratio Al/Ta of the starting materials is fixed at 100.60. The starting materials are heated at 1650°C for 5 h. (②) Ta₅B₆, (O) TaB, (⊖) Ta₃B₄, (●) TaB₂, (α) α-Al₂O₃.

This was because the crystals sank in the aluminum solution due to the difference in density between Ta_5B_6 ($d_{calc}=13.808 \text{ g cm}^{-3}$) and aluminum ($d^{20}=$ 2.6989 g cm⁻³).¹⁹⁾ A SEM photograph of the Ta₅B₆ crystals obtained is shown in Fig. 3. The shape of the Ta₅B₆ crystals was mostly irregular, though there were trapezoidally shaped crystals, enclosed by two large {010} planes. Ta₅B₆ crystals had a grey color and metallic luster. The largest crystals prepared had maximum dimensions of about 0.12 mm×0.13 mm× Although the Ta₅B₆ crystals were not 0.23 mm.analysed chemically, the electron microprobe analysis showed that the aluminium concentration in the crystals is generally below the detection limit (<0.05% Occasionally, however, higher values were registered. They were shown to originate in small closed pores containing aluminium or in minute fragments of Al₂O₃ (from the crucible) adhering to the crystal surface. Accordingly, the solid solubility of

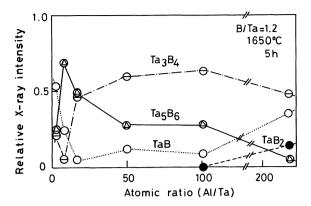


Fig. 2. Relative X-ray intensity of each phase in the products obtained from several starting materials with various aluminium contents. The atomic ratio B/Ta is fixed at 1.2. The starting materials are heated at 1650°C for 5 h.

aluminium in Ta_5B_6 could be negligible. In addition to aluminium, only traces of iron and silicon were detected, which suggests that the crystals were very pure. The EPMA technique was also used to measure the distribution of tantalum and boron on the surface of the crystals obtained by varying the atomic ratio of the starting materials (B/Ta, Al/Ta), soaking temperature, and soaking time. From these examinations it can be concluded that the distribution of Ta and B in the crystal surface is homogeneous.

Characterization of the Single Crystals. The Ta₅B₆ crystals obtained were examined in Weissenberg and precession cameras. A crystal of the size, $0.08 \text{ mm} \times 0.09 \text{ mm} \times 0.13 \text{ mm}$, was selected for single-crystal X-ray diffraction analysis. An oscillation photograph taken with the c axis as rotation axis displayed mirror symmetry perpendicular to the rotation axis. The Weissenberg (zero and first layer) and oscillation photographs showed that the symmetry is orthorhombic. The approximate cell dimensions were found to be a=3.17 Å, b=22.65 Å, and c=3.29 Å. The observed systematic extinctions were:

$$hkl: h + k = 2n$$

$$hk0: h + k = 2n$$

$$h00: h = 2n$$

$$0k0: k = 2n$$

The presented extinction conditions and the symmetry observed lead to the possible space groups Cmm2, Cm2m, C222, and $Cmmm.^{20}$ A precession photograph of the a*-b* plane was taken using Cu K radiation and μ =25° (Fig. 4). The photograph shows that the crystal has no satellites or intergrown phases. The basic crystal data are collected in Table 2. The unit cell dimensions presented in the Table were obtained from Guinier-Hägg X-ray powder diffrac-

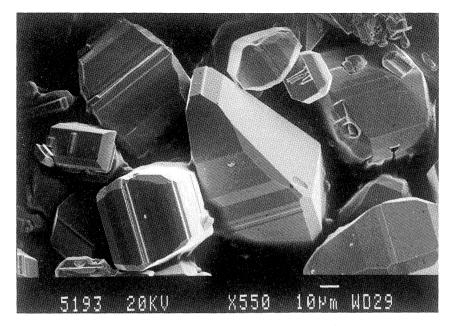


Fig. 3. Scanning electron microphotograph of Ta₅B₆ single crystals.

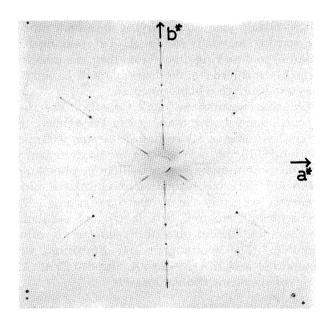


Fig. 4. A precession photograph of a Ta_5B_6 single crystal. c axis, zero-level, μ =25°; Cu K, Ni filter.

tion films.21)

The cell dimensions presented are in good agreement with those obtained by using a four-circle single crystal diffractometer. Guinier-Hägg X-ray diffraction intensities for Ta_5B_6 are presented in Table 3 together with observed and calculated interplanar spacings ($d_{\rm obs}$ and $d_{\rm calc}$, respectively). The diffraction data for Ta_5B_6 are very similar to those reported for V_5B_6 (Space group Ammm, a=3.058 Å, b=21.25 Å, c=2.974 Å.²²⁾ A complete structure determination and refinement of Ta_5B_6 has been carried out and was

Table 2. Crystal Data of Ta₅B₆ Single Crystal

Formula unit	Ta_5B_6
Crystal system	Orthorhombic
a/Å	3.1385(10)
$b/ ext{Å}$	22.609(7)
c/Å	3.2865(8)
$V/ m \AA^3$	233.20(12)
Space group	Cmm2 or $Cm2m$ or $C222$ or
	Cmmm
$d_{ ext{X-ray}}/ ext{g cm}^{-3}$	13.808(2)
Z	2

reported at the 32nd IUPAC Congress.²³⁾ It showed that Ta_5B_6 is iso-structural with V_5B_6 as anticipated. A complete description of the structure refinement will be published shortly.²⁴⁾ The present study of the new compound, Ta_5B_6 is the first crystal growth study of a material crystallizing in the V_5B_6 -type structure.

The financial support of the Swedish Natural Science Council and the Research Council of the Swedish Board for Technical Development.

References

- 1) B. Aronsson, T. Lundström, and S. Rundqvist, "Borides, Silicides and Phosphides," Methuen, London (1965).
 - 2) T. Lundström, J. Less-Common Metals, 100, 215 (1984).
- 3) R. Keiffer and G. Jangg, *Powder Metall. Int.*, 5, 25 (1973).
- 4) V. N. Gurin, M. M. Korsukova, S. P. Nikanorov, I. A. Smirnov, N. N. Stepanov, and S. G. Shul'man, J. Less-Common Metals, 47, 265 (1976).
- 5) I. Higashi, Y. Takahashi, and T. Atoda, J. Crys. Growth, 33, 207 (1976).

			,				
h k l	$d_{ m calc}$	$d_{ m obs}$	I/I_1	h k l	$d_{ m calc}$	$d_{ m obs}$	I/I_1
0 2 0	11.305	11.301	4.0	2 2 1	1.405	1.405	35.7
0 4 0	5.652	5.655	10.3	1 5 2	1.386	1.386	71.3
0 6 0	3.768	3.771	16.9	1 13 1	1.381	1.381	85.0
0 0 1	3.287	3.288	7.0	2 4 1			
0 2 1	3.156	3.158	57.7	$2 \ 8 \ 0^{)}$	1.373	1.374	12.2
1 1 0	3.109	3.111	1.3	1 15 0	1.359	1.359	24.1
1 3 0	2.897	2.899	2.9	$\begin{pmatrix} 0 & 10 & 2 \\ 1 & 7 & 2 \end{pmatrix}$		1 200	
0 4 1	2.841	2.842	20.2	1 7 2 ⁾	1.328	1.329	46.5
0 8 0	2.826	2.826	5.5	2 6 1	1.326		
1 5 0	2.578	2.579	79.3	0 16 1	1.298	1.299	1.7
0 6 1	2.477	2.477	6.7	2 10 0	1.289	1.289	29.8
0 10 0	2.261	2.261	64.4	2 8 1	1.266	1.266	55.3
1 1 1	2.258	_	_	1 9 2	1.260	1.261	8.8
1 7 0	2.251	2.252	6.7	0 18 0	1.050	1.050	
1 3 1	2.173	2.173	100.0	1 15 1 ⁾	1.256	1.256	1.6
0 8 1	2.143	2.143	81.2	0 12 2	1.238	1.239	8.0
1 5 1	2.029	2.030	11.9	1 17 0	1.225	1.225	8.1
1 9 0	1.961	1.961	6.9	2 12 0	1.206	1.207	17.7
0 12 0	1.884	1.884	6.4	2 10 1	1.200	_	
0 10 1	1.863	_		1 11 2	1.188	1.188	29.0
1 7 1	1.857	1.857	26.1	0 18 1	1.173	1.173	55.8
1 11 0	1.720	1.720	25.6	0 14 2	1.152	1.152	4.9
1 9 1	1.684	1.684	12.3	1 17 1	1.148		_
0 0 2	1.643	1.643	49.3	2 0 2	1.135	1.135	50.6
0 12 1	1.635	1.638	4.9	2 12 1	1.132	1.133	4.8
0 2 2	1.626	1.626	1.5	0 20 0	1.130	1.130	7.1
0 14 0	1.615	1.615	4.1	$2 \ 2 \ 2'$			
0 4 2	1.578	1.577	17.1	2 14 0	1.125	1.125	4.0
2 0 0	1.569	1.567	5.4	1 13 2	1.116	1.116	9.0
2 2 0	1.554	1.554	1.4	$\begin{pmatrix} 2 & 4 & 2 \\ 1 & 19 & 0 \end{pmatrix}$	1.113	1.113	2.9
$\begin{pmatrix} 1 & 11 & 1 \\ 1 & 13 & 0 \end{pmatrix}$	1.522	1.522	5.1	1 19 0'	1.113	1.113	2.3
2 4 0	1.512	1.512	3.2				
0 6 2	1.506	1.506	6.8				
1 1 2	1.453	1.451	4.9				
$\begin{pmatrix} 0 & 14 & 1 \\ 2 & 6 & 0 \end{pmatrix}$	1.449	1.446	7.5				
1 3 2	1.429						
0 8 2	1.421	1.421	3.0				
2 0 1	1.421	1.416	5.3				
0 16 0	1.413	1.413	13.0				
0 10 0	1.113	1.110	15.0				

Table 3. Powder X-Ray Diffraction Data of Ta₅B₆

- 6) S. Okada, T. Atoda, I. Higashi, and Y. Takahashi, *J. Mater. Science*, **22**, 2993 (1987).
- 7) S. Okada, T. Atoda, and I. Higashi, J. Solid State Chem., **68**, 61 (1987).
- 8) J. M. Leitnaker, M. G. Bowman, and P. W. Gilles, *J. Electrochem. Soc.*, **108**, 568 (1961).
- 9) G. V. Samsonov and I. M. Vinitskii, "Handbook of Refractory Compounds," IFI/Plenum, New York (1980), p.
- 10) S. Okada, T. Atoda, and Y. Takahashi, Nippon Kagaku Kaishi, 1985, 1535.
- 11) R. D. Deslattes and A. Henins, *Phys. Rev. Lett.*, **31**, 972 (1973).
- 12) K. E. Johanson, T. Palm, and P.-E. Werner, J. Phys. E., 13, 1289 (1980).
- 13) S. Okada, T. Atoda, I. Higashi, and Y. Takahashi, J. Less-Common Metals, 113, 331 (1985).
- 14) J. A. Kohn and D. W. Eckart, *Anal. Chem.*, **32**, 296 (1960).

- 15) T. Ito, I. Higashi, and T. Sakurai, *J. Solid State Chem.*, **28**, 171 (1979).
- 16) I. Higashi, T. Sakurai, and T. Atoda, J. Solid State Chem., 20, 67 (1977).
- 17) I. Higashi, J. Solid State Chem., 47, 333 (1983).
- 18) H. Holleck, Monatsh. Chem., 95, 552 (1964).
- 19) Iwanami Shoten, "Rikagaku Jiten," 3rd ed., (1976), p. 55.
- 20) International Tables for Crystallography. Vol. A. ed by T. Halm and D. Reidel, Dordrecht, Holland (1983).
- 21) S. Andersson and B. Callmer, *J. Solid State Chem.*, **10**, 219 (1974).
- 22) K. E. Spear and P. W. Gilles, *High Temp. Sci.*, 1, 86 (1969).
- 23) H. Bolmgren, T. Lundström, S. Okada, L.-E. Tergenius, and I. Higashi, Contribution to the 32nd IUPAC Congress, Augast 2—7, Stockholm, 1989.
- 24) H. Bolmgren, T. Lundström, S. Okada, L.-E. Tergenius, and I. Higashi, *J. Less-Common Metals*, in press.